Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Adailton J. Bortoluzzi,* Luciano Fernandes and Marcus M. Sá

Departamento de Química - UFSC, 88040-900 Florianópolis, SC, Brazil

Correspondence e-mail: adajb@qmc.ufsc.br

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.039$
$w R$ factor $=0.111$
Data-to-parameter ratio $=14.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Methyl (Z)-2-(bromomethyl)-3-(3,4-methylene-dioxyphenyl)prop-2-enoate

The title compound, $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrO}_{4}$, is an allylic bromide, which is an interesting precursor in organic synthesis. The skeleton of the molecule is nearly planar, indicating delocalization. The crystal packing is governed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with the molecules stacked along the [100] and [010] directions.

Comment

Multifunctional allylic bromides such as the title compound, (I), are versatile building blocks for the stereoselective construction of natural products and heterocycles of biological relevance (Drewes \& Emslie, 1982; Hoffmann \& Rabe, 1985; Cheskis et al., 1990; Roush \& Brown, 1993; Basavaiah \& Hyma, 1996; Grassi et al., 1997; Mateus et al., 2001; Fernandes et al., 2004). Preparation of allylic bromide (I) can be achieved in good yield and excellent stereoselectivity by treating the corresponding α-methylene- β-hydroxy ester (II) (a BaylisHillman adduct) (Basavaiah et al., 2003; Ciganek, 1997; Sá, 2003; Hoffmann \& Buchholz, 1991) with a combination of HBr and $\mathrm{H}_{2} \mathrm{SO}_{4}$, as previously reported (Fernandes et al., 2004). Careful crystallization from hexane-ethyl acetate (9:1) furnished colourless crystals (m.p. $=343-344 \mathrm{~K}$), allowing structural elucidation by X-ray crystallographic techniques.

The benzo[1,3]dioxole unit is nearly planar, whereas the five-membered [1,3]dioxole ring is slightly envelope shaped, with atom C11 lying 0.129 (6) \AA out of the mean plane of all five atoms. The propenoate group $\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{O} 3 / \mathrm{O} 4$ is also nearly planar (r.m.s. deviation $=0.043 \AA$), with a $\mathrm{C} 1-\mathrm{C} 7-$ C8-C9 torsion angle of $178.6(4)^{\circ}$. The dihedral angle between the aromatic ring and the plane of the propenoate group $\left[6.1(2)^{\circ}\right.$] and the torsion angle $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$ [168.3 (4) ${ }^{\circ}$] indicate that there is electron delocalization in the skeleton of (I). An intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction (Table 1) contributes to the planarity of the molecular skeleton. Bond lengths and angles are as expected.

The packing arrangement of (I) is mainly governed by $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ weak interactions (Table 1), with the molecules stacked along the [100] and [010] directions (Fig. 2).

Experimental

The title compound was synthesized according to the method of Fernandes et al. (2004).

Received 26 May 2006
Accepted 12 July 2006

Figure 1
The molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrO}_{4}$
$M_{r}=299.12$
Triclinic, $P \overline{1}$
$a=6.725(3) \AA$
$b=8.845(2) \AA$
$c=9.941(1) \AA$
$\alpha=91.41(2)^{\circ} \AA$
$\beta=90.98(2)^{\circ}$
$\gamma=98.49(2)^{\circ}$

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
\quad (North et al., 1968)
$\quad T_{\min }=0.200, T_{\max }=0.225$
2567 measured reflections

2166 independent reflections
1691 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=25.5^{\circ}$
3 standard reflections every 200 reflections intensity decay: 1%

Refinement

Refinement on F^{2}

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0595 P)^{2}\right. \\
& +0.5446 P]
\end{aligned}
$$

$$
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3
$$

$$
(\Delta / \sigma)_{\max }=0.001
$$

$$
\Delta \rho_{\max }=0.99 \mathrm{e}^{-3}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.4 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.43
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 4$	0.93	2.33	2.756 (5)	108
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 4^{\text {i }}$	0.93	2.44	3.318 (5)	158
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{O} 4^{\mathrm{ii}}$	0.97	2.50	3.300 (6)	140
$\mathrm{C} 10-\mathrm{H} 10 B \cdots \mathrm{O} 1^{\text {iii }}$	0.96	2.52	3.334 (5)	143
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O} 2^{\text {iv }}$	0.97	2.58	3.458 (5)	150

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+2,-y+1,-z+1$; (iii) $x-1, y+1, z$; (iv) $-x+2,-y+1,-z+2$.

H atoms were placed in calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}$ (methyl C). The highest residual peak is located $1.10 \AA$ from the Br atom.

Figure 2
A view along the a axis of the partial packing of the title compound, showing the intermolecular hydrogen bonds (dashed lines).

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: SET4 in CAD-4 EXPRESS; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

We are indebted to FAPESC, CAPES, CNPq and FINEP for financial support of this work.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Basavaiah, D. \& Hyma, R. S. (1996). Tetrahedron, 52, 1253-1258.
Basavaiah, D., Rao, A. J. \& Satyanarayana, T. (2003). Chem. Rev. 103, 811-891.
Cheskis, B. A., Moiseenkov, A. M., Shpiro, N. A., Stashina, G. A. \& Zhulin, V. M. (1990). Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.), 39, 716720.

Ciganek, E. (1997). Org. React. 51, 201-350.
Drewes, S. E. \& Emslie, N. D. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 20792083.

Enraf-Nonius (1994). CAD-4 EXPRESS, Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Fernandes, L., Bortoluzzi, A. J. \& Sá, M. M. (2004). Tetrahedron, 60, $9983-$ 9989.

Grassi, D., Lippuner, V., Aebi, M., Brunner, J. \& Vasella, A. (1997). J. Am. Chem. Soc. 119, 10992-10999.
Hoffmann, H. M. R. \& Buchholz, R. (1991). Helv. Chim. Acta, 74, 1213-1221.
Hoffmann, H. M. R. \& Rabe, J. (1985). J. Org. Chem. 50, 3849-3859.
Mateus, C. R., Feltrin, M. P., Costa, A. M., Coelho, F. \& Almeida, W. P. (2001). Tetrahedron, 57, 6901-6908.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Roush, W. R. \& Brown, B. B. (1993). J. Org. Chem. 58, 2151-2161.
Sá, M. M. (2003). J. Braz. Chem. Soc. 14, 1005-1010.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1996). HELENA. University of Utrecht. The Netherlands.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

